코딩왕랄프👊🏻

[알고리즘] DFS 본문

알고리즘

[알고리즘] DFS

hyerm_2 2022. 3. 30. 14:12
반응형
SMALL

DFS 알고리즘 (Depth-First Search , 깊이우선탐색)

 

특징

-루트 노드에서 시작해서 다음 분기로 넘어가기 전에 해당 분기를 완벽하게 탐색하는 방법

- 한 방향으로 갈 수 있을 때까지 계속 가다가 더 이상 갈 수 없게 되면 다시 가장 가까운 갈림길로 돌아와서 이곳으로부터 다른 방향으로 다시 탐색을 진행하는 방법과 유사

 

사용되는 상황

-  모든 노드를 방문 하고자 하는 경우

- 경로의 특징이 필요한 문제를 풀 때

 

알고리즘 특징

- 자기 자신을 호출하는 순환 알고리즘의 형태 
- 그래프 탐색의 경우 어떤 노드를 방문했었는지 여부를 반드시 검사 해야 함

 

탐색 과정

구현 (Javascript)
const graph = {
  A: ["B", "C"],
  B: ["A", "D"],
  C: ["A", "G", "H", "I"],
  D: ["B", "E", "F"],
  E: ["D"],
  F: ["D"],
  G: ["C"],
  H: ["C"],
  I: ["C", "J"],
  J: ["I"]
};

const DFS = (graph, startNode) => {
  const visited = []; // 탐색을 마친 노드들
  let needVisit = []; // 탐색해야할 노드들

  needVisit.push(startNode); // 노드 탐색 시작

  while (needVisit.length !== 0) { // 탐색해야할 노드가 남아있다면
    const node = needVisit.shift(); // queue이기 때문에 선입선출, shift()를 사용한다.
    if (!visited.includes(node)) { // 해당 노드가 탐색된 적 없다면
      visited.push(node); 
      needVisit = [...graph[node], ...needVisit];
    }
  }
  return visited;
};

console.log(DFS(graph, "A"));
// ["A", "B", "D", "E", "F", "C", "G", "H", "I", "J"]

 

 

 

구현 (Java)
import java.io.*;
import java.util.*;

/* 인접 리스트를 이용한 방향성 있는 그래프 클래스 */
class Graph {
  private int V;   // 노드의 개수
  private LinkedList<Integer> adj[]; // 인접 리스트

  /** 생성자 */
  Graph(int v) {
      V = v;
      adj = new LinkedList[v];
      for (int i=0; i<v; ++i) // 인접 리스트 초기화
          adj[i] = new LinkedList();
  }

  /** 노드를 연결 v->w */
  void addEdge(int v, int w) { adj[v].add(w); }

  /** DFS에 의해 사용되는 함수 */
  void DFSUtil(int v, boolean visited[]) {
      // 현재 노드를 방문한 것으로 표시하고 값을 출력
      visited[v] = true;
      System.out.print(v + " ");

      // 방문한 노드와 인접한 모든 노드를 가져온다.
      Iterator<Integer> i = adj[v].listIterator();
      while (i.hasNext()) {
          int n = i.next();
          // 방문하지 않은 노드면 해당 노드를 시작 노드로 다시 DFSUtil 호출
          if (!visited[n])
              DFSUtil(n, visited); // 순환 호출
      }
  }

  /** 주어진 노드를 시작 노드로 DFS 탐색 */
  void DFS(int v) {
      // 노드의 방문 여부 판단 (초깃값: false)
      boolean visited[] = new boolean[V];

      // v를 시작 노드로 DFSUtil 순환 호출
      DFSUtil(v, visited);
  }

  /** DFS 탐색 */
  void DFS() {
      // 노드의 방문 여부 판단 (초깃값: false)
      boolean visited[] = new boolean[V];

      // 비연결형 그래프의 경우, 모든 정점을 하나씩 방문
      for (int i=0; i<V; ++i) {
          if (visited[i] == false)
              DFSUtil(i, visited);
      }
  }
}

/** 사용 방법 */
public static void main(String args[]) {
    Graph g = new Graph(4);

    g.addEdge(0, 1);
    g.addEdge(0, 2);
    g.addEdge(1, 2);
    g.addEdge(2, 0);
    g.addEdge(2, 3);
    g.addEdge(3, 3);

    g.DFS(2); /* 주어진 노드를 시작 노드로 DFS 탐색 */
    g.DFS(); /* 비연결형 그래프의 경우 */
}

 

인접 리스트로 구현(Java)
import java.util.*;

public class DFS_List {
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);

		int n = sc.nextInt(); // 정점의 개수 
		int m = sc.nextInt(); // 간선의 개수 
		int v = sc.nextInt(); // 탐색을 시작할 정점의 번호 

		boolean visited[] = new boolean[n + 1]; // 방문 여부를 검사할 배열 

		LinkedList<Integer>[] adjList = new LinkedList[n + 1];

		for (int i = 0; i <= n; i++) {
			adjList[i] = new LinkedList<Integer>();
		}

		// 두 정점 사이에 여러 개의 간선이 있을 수 있다.
		// 입력으로 주어지는 간선은 양방향이다.
		for (int i = 0; i < m; i++) {
			int v1 = sc.nextInt();
			int v2 = sc.nextInt();
			adjList[v1].add(v2);
			adjList[v2].add(v1);
		}

		for (int i = 1; i <= n; i++) { // 방문 순서를 위해 오름차순 정렬 
			Collections.sort(adjList[i]);
		}

		System.out.println("DFS - 인접리스트");
		dfs_list(v, adjList, visited);
	}
	
	// DFS - 인접리스트 - 재귀로 구현 
	public static void dfs_list(int v, LinkedList<Integer>[] adjList, boolean[] visited) {
		visited[v] = true; // 정점 방문 표시
		System.out.print(v + " "); // 정점 출력

		Iterator<Integer> iter = adjList[v].listIterator(); // 정점 인접리스트 순회
		while (iter.hasNext()) {
			int w = iter.next();
			if (!visited[w]) // 방문하지 않은 정점이라면 
				dfs_list(w, adjList, visited); // 다시 DFS
		}
	}

}

 

인접 행렬로 구현 (Java)
import java.util.*;

public class DFS_Array {
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);

		int n = sc.nextInt(); // 정점의 개수 
		int m = sc.nextInt(); // 간선의 개수 
		int v = sc.nextInt(); // 탐색을 시작할 정점의 번호 

		boolean visited[] = new boolean[n + 1]; // 방문 여부를 검사할 배열 

		int[][] adjArray = new int[n+1][n+1];

		// 두 정점 사이에 여러 개의 간선이 있을 수 있다.
		// 입력으로 주어지는 간선은 양방향이다.
		for(int i = 0; i < m; i++) {
			int v1 = sc.nextInt();
			int v2 = sc.nextInt();

			adjArray[v1][v2] = 1;
			adjArray[v2][v1] = 1;
		}

		System.out.println("DFS - 인접행렬 / 재귀로 구현");
		dfs_array_recursion(v, adjArray, visited);
		Arrays.fill(visited, false); // 스택 DFS를 위해 visited 배열 초기화

		System.out.println("\n\nDFS - 인접행렬 / 스택으로 구현");
		dfs_array_stack(v, adjArray, visited, true);
	}
	
	//DFS - 인접행렬 / 재귀로 구현 
	public static void dfs_array_recursion(int v, int[][] adjArray, boolean[] visited) {
		int l = adjArray.length-1;
		visited[v] = true;
		System.out.print(v + " ");

		for(int i = 1; i <= l; i++) {
			if(adjArray[v][i] == 1 && !visited[i]) {
				dfs_array_recursion(i, adjArray, visited);
			}
		}
	}

	//DFS - 인접행렬 / 스택으로 구현 
	public static void dfs_array_stack(int v, int[][] adjArray, boolean[] visited, boolean flag) {
		int l = adjArray.length-1;
		Stack<Integer> stack = new Stack<Integer>();
		stack.push(v);
		visited[v] = true;
		System.out.print(v + " ");

		while(!stack.isEmpty()) {
			int w = stack.peek();
			flag = false; 

			for(int i = 1; i <= l; i++) {
				if(adjArray[w][i] == 1 && !visited[i]) {
					stack.push(i);
					System.out.print(i + " ");
					visited[i] = true;
					flag = true;
					
					break;
				}
			}

			if(!flag) {
				stack.pop();
			}
		}
	}
	
}

 

Reference

https://gmlwjd9405.github.io/2018/08/14/algorithm-dfs.html

반응형
LIST

'알고리즘' 카테고리의 다른 글

다익스트라 알고리즘  (0) 2023.08.02
[알고리즘] 다이나믹 프로그래밍 DP  (0) 2022.04.13
[알고리즘] BFS  (0) 2022.03.26
[알고리즘] 선택정렬 Selection Sort  (0) 2022.03.03